An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa

South African Journal of Science


 
 
Field Value
 
Title An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa
 
Creator Venter, Andrew D. Vakkar, Ville Beukes, Johan P. van Zyl, Pieter G. Laakso, Heikki Mabaso, Desmond Tiitta, Petri Josipovic, Miroslav Kulmala, Markku Pienaar, Jacobus J. Laakso, Lauri
 
Subject Atmospheric Science; Air Quality Bushveld Igneous Complex; air quality; sulphur dioxide; nitrogen dioxide; black carbon
Description South Africa has the largest industrialised economy in Africa, with significant mining and metallurgical activities. A large fraction of the South African mineral assets is concentrated in the Bushveld Igneous Complex (BIC), with the western limb being the most exploited. Because the majority of the world’s platinum is produced in the BIC, this area is also of international interest. There are some indications that the western BIC should be considered an air pollution hotspot; however, inadequate data exist to substantiate these claims scientifically. To partially address this knowledge gap, a comprehensive air quality monitoring station was operated for more than 2 years in this area. Meteorological parameters, trace gas concentrations and total mass concentration of particulate matter up to 10 µm in size (PM10) were measured. Compared with South African and European ambient air quality standards, SO2, NO2 and CO concentrations were generally acceptable. The major sources of SO2 were identified as high-stack industry emissions, while household combustion from semi-formal and informal settlements was identified as the predominant source of NO2 and CO. In contrast, O3 exceeded the 8-h moving average more than 322 times per year. The main contributing factor was identified to be the influx of regional air masses, with high O3 precursor concentrations. PM10 exceeded the current South African 24-h standard 6.6 times per year, the future (2015) standard 42.3 times per year and the European standard more than 120 times per year. The main source of PM10 was identified as household combustion from semi-formal and informal settlements. The findings clearly indicate that atmospheric O3 and PM10 levels in the western BIC need to be addressed to avoid negative environmental and human health impacts.
 
Publisher AOSIS
 
Contributor North-West University (South Africa), University of Helsinki (Finland)
Date 2012-09-14
 
Type info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion — Experimental
Format application/pdf text/html application/octet-stream text/xml
Identifier 10.4102/sajs.v108i9/10.1059
 
Source South African Journal of Science; Vol 108, No 9/10 (2012); 10 Pages 1996-7489 0038-2353
 
Language eng
 
Relation https://journals.sajs.aosis.co.za/index.php/sajs/article/view/1059/1395 https://journals.sajs.aosis.co.za/index.php/sajs/article/view/1059/1399 https://journals.sajs.aosis.co.za/index.php/sajs/article/view/1059/1403 https://journals.sajs.aosis.co.za/index.php/sajs/article/view/1059/1410
 
Coverage Western Bushveld Igneous Complex; Troposphere — —
Rights Copyright (c) 2012 Andrew D. Venter, Ville Vakkar, Johan P. Beukes, Pieter G. van Zyl, Heikki Laakso, Desmond Mabaso, Petri Tiitta, Miroslav Josipovic, Markku Kulmala, Jacobus J. Pienaar, Lauri Laakso https://creativecommons.org/licenses/by/4.0